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L-Selenocysteine (Sec or U) has been called the “21st amino
acid”! Like the twenty common amino acids, selenocysteine is
inserted during the translation of MRNA and has its own tRNA
and codon, UGA. This codon also serves asdpal stop codon.
Decoding a UGA codon as one for selenocysteine requires a
special structure in the 8ntranslated region of the mRNA called
a sdenccysteineinsertionsequence (SECIS) element. Because
eukaryotic and prokaryotic cells use a different SECIS element
to decode UGA as selenocysteine, the production of eukaryotic
selenocysteine-containing proteins in prokaryotes is problermatic.
Here, we describe a general semisynthetic route to proteins
containing selenocysteiri.

In “native chemical ligation”, the thiolate of an N-terminal
cysteine residue in one peptide attacks a C-terminal thioester in
another peptide to produce, ultimately, an amide bond between
the two peptides (Scheme 1)jExpressed protein ligation” is an
extension in which the C-terminal thioester is produced by using
recombinant DNA (rDNA) technology. We reasoned that
selenocysteine, like cysteine, could effect both native chemical
ligation and expressed protein ligation, and thereby provide a
means to incorporate selenocysteine into proteins.

We used AcGlySCKC(O)NHCH; as a model thioester to test
the feasibility of using selenocysteine in native chemical ligation.
Reaction with cystine ((CysOb))in the presence of the reducing
agent tris-(2-carboxyethyl)phosphine (TCEP) produced AcGly-
CysOH, as well as some (AcGlyCysOHWhen selenocystine
((SecOH)) was used in the same reaction, the product was
(AcGlySecOH).8
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A selenolate (RS9 is more nucleophilic than is its analogous
thiolate (RS).° Moreover, the [, of a selenol (RSeH) is lower
than that of its analogous thiol (RSPH° These properties
suggested to us that native chemical ligation with selenocysteine
could be more rapid than with cysteine, especially at low pH. To
test this hypothesis, we used the chromogenic thioester AcGly-
SGHs-p-NO; (1; Scheme 2) to determine the rate of native
chemical ligation as a function of pH.The resulting pH-rate
profile is shown in Figure 1. Reaction with selenocysteine is 10
fold faster than with cysteine at pH 5.0. Thus, native chemical
ligation with selenocysteine can be chemoselective.

Having demonstrated the effectiveness of selenocysteine in
native chemical ligation, we next set out to explore its utility in
expressed protein ligation. As a model protein, we chose
ribonuclease A (RNase A; EC 3.1.27.5; Figure 2), which has been
the object of much seminal work in protein chemisthRNase
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10 ribonucleolytic activities fafKm = (1.13+ 0.06) x 10 M~1s7?
and (1.1+ 0.1) x 10" M1 s1, respectively® indicating that

10-2 C110U RNase A is not only intact but also folded properly (Figure
2). We conclude that the isomorphous replacement of sulfur with
10-8 selenium can be effected with expressed protein ligation.
Kops (s71) Incorporation of selenocysteine residues into proteins could
104 have much utility. For example, proteins containing selenosulfide
(Se-S) or diselenide (SeSe) bonds could have high conforma-
10 tional stability in a reducing environment (such as the cytosol),
as the reduction potential of selenosulfide and diselenide bonds
n . . ) ) is less than that of the corresponding disulfide b&Hd.addition,
10 4 5 ) 7 ) 9 incorporation of selenocysteine could be used to reveal structure
pH function relationships witfi’Se NMR spectroscopyor determine
Figure 1. pH-Rate profile for the reaction in Scheme 2 with CysOH the phafse of pr_Ote'n CrySt"ﬂ}SFmaHY' Chemoselecnve_ alkylation
(0) and SecOH®).!! Data were fitted to the equatiorkss = K[1]/(1 + of the side chain of a selenocysteine resfdurereduction of the
[H*]/K2) with pK.S¥s = 8.30° and [K.Sec = 5.248a yielding k = (3.7 x C—Se bond to create alanittevould expand the scope of protein
10%) M1 s1for CysOH andk = (9.5 x 10%) M~1 s1 for SecOH. semisynthesis.

Many natural proteins contain selenocysteine residues. For
example, mammalian thioredoxin reductase uses a selenosulfide
bond in its catalytic mechanisfAiThiol:disulfide oxidoreductases
have a CXXC motif in their active sit&.Likewise, selenoprotein
W has a CXXU motif, and selenoprotein P has a UXXC motif
as well as 16 other cysteine and 9 other selenocysteine redfdues.
The role of selenocysteine in the function of selenoprotein W or
selenoprotein P is unknown. The methods described herein make
these and other selenocysteine-containing proteins readily amen-
able to detailed structurefunction analyses.
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